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Abstract The principal aim of this paper is to extend some recent results which concern
problems involving bifunctions to similar generalized problems for multivalued bifunctions.
To this end, by using the appropriate notions of strict pseudomonotonicity we establish the
relationships between generalized vector equilibrium problems and generalized minimal ele-
ment problems of feasible sets. Moreover relationships between generalized least element
problems of feasible sets and generalized vector equilibrium problems are studied by employ-
ing the concept of Z -multibifunctions.
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1 Introduction

Cryer and Dempster (see [3]) studied the equivalence of linear complementarity problems,
linear programs, least-element problems, variational inequality problems, and minimization
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problems in vector lattice Hilbert spaces. Riddell in [7] extended these results to a certain
class of nonlinear monotone maps, called Z -maps, acting from a Banach space to its adjoint
space. Schaible and Yao (see [8]) proved the equivalence for these problems by introducing
stictly pseudomonotone Z -maps operating on Banach lattices, moreover in [1] the results of
Schaible and Yao were been extended to point-to-set maps. Fang and Huang (see [4]) intro-
duced the concept of feasible set for an equilibrium problem with a convex cone, generalized
the notion of a Z -map for bifunctions and they derived some equivalence results of equi-
librium problems, least element problems and nonlinear programming problems. Recently
Fang and Huang (see [5]), assuming a strict pesudomonotonicity and Z -maps assumptions,
established relationships between vector equilibrium problems, minimal element problems
and least element problems and they obtained a generalized sublattice property of feasible
sets for vector equilibrium problems in Banach lattices.

In this paper we establish the relationships between generalized vector equilibrium prob-
lems and generalized minimal element problems of feasible sets by using the appropriate
notions of strict pseudomonotonicity. Moreover we establish relationships between general-
ized least element problems of feasible sets and generalized vector equilibrium problems by
employing the concept of Z -multibifunctions.

2 Basic facts

Let (X, P) be an ordered Banach space, where X is a real Banach space and P is a pointed
convex cone. The partial order ≤ on X induced by the pointed cone P is defined by declaring
x ≤ y if and only if y − x ∈ P for x, y ∈ X . P is called a positive cone on X . Let K ⊆ X
be a nonempty, closed and convex set. Let Y be a Banach space and �(Y ) be the set of all
non empty subsets of Y . Let F be a mapping from P × P to �(Y ). Let C ⊆ Y be a proper
closed, convex, and solid cone. We denote with F s the feasible set of F with respect to P ,
defined by

Fs = {x ∈ P : F(x, x + y) ⊆ C,∀y ∈ P}.
We denote with Fw the weak feasible set of F with respect to P , defined by

Fw = {x ∈ P : F(x, x + y) �⊆ −int C, ∀y ∈ P}.
In this paper we consider the following problems:

(I) Generalized strong vector equilibrium problem (in short GSVEP): Find x ∈ P such
that F(x, y) ⊆ C, ∀y ∈ P.

(II) Generalized weak vector equilibrium problem (in short GWVEP): Find x ∈ P such
that F(x, y) �⊆ −int C, ∀y ∈ P.

(III) Generalized least element problem associated with Fs (in short GSLEP): Find x ∈ Fs

such that x ≤ y, ∀y ∈ Fs.

(IV) Generalized least element problem associated withFw (in short GWLEP): Find x ∈ Fw

such that x ≤ y, ∀y ∈ Fw.

(V) Generalized minimal element problem associated with Fs: Find x ∈ Fs such that there
is no y ∈ Fs with y �= x and y ≤ x .

(VI) Generalized minimal element problem associated with Fw: Find x ∈ Fw such that
there is no y ∈ Fw with y �= x and y ≤ x .
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The purpose of this paper is to study the relationship of (I)–(VI).
We first recall the following notations and definitions.

Definition 1 A mapping F : K → �(Y ) is said to be hemicontinuous, if for any pair
x, y ∈ K and α ∈ [0, 1], the mapping α → F(αx + (1 − α)y, y) is continuous at 0+.

Definition 2 (see[6]) Let F : K × K → �(Y ) and C be a closed, convex, and solid cone.
F is said to be C-quasiconvex, if F for all x ∈ K , y′ ∈ K , y′′ ∈ K and α ∈ [0, 1], we have

F(x, y′) ⊆ F(x, αy′ + (1 − α)y′′) + C

or

F(x, y′′) ⊆ F(x, αy′ + (1 − α)y′′) + C

Remark 1 We observe that Definition 2 means that F(x, .) for each x ∈ K is C-quasiconvex
(see [2]).

Definition 3 (see [6]) Let F : K × K → �(Y ), C ⊆ Y be a closed, convex, and solid cone.
F is said to be explicitly C-quasiconvex, if F is C-quasiconvex and for all y′ ∈ K , y′′ ∈ K
and α ∈ (0, 1), we have

F(αy′ + (1 − α)y′′, y′) ⊆ F(αy′ + (1 − α)y′′, αy′ + (1 − α)y′′) + C

or

F(αy′ + (1 − α)y′′, y′′) ⊆ F(αy′ + (1 − α)y′′, αy′ + (1 − α)y′′) + C

and, in case F(αy′ + (1 − α)y′′, y′) − F(αy′ + (1 − α)y′′, y′′) ⊆ int C for all α ∈ (0, 1),
we have

F(αy′ + (1 − α)y′′, y′) ⊆ F(αy′ + (1 − α)y′′, αy′ + (1 − α)y′′) + C

Definition 4 Let F : K × K → �(Y ) and C ⊆ Y be a closed, convex, and solid cone. The
multibifunction F is said to be

(i) pseudomonotone of Type I if for all x, y ∈ K , we have

F(x, y) �⊆ −int C ⇒ F(y, x) �⊆ int C.

(ii) strictly pseudomonotone of Type I if for all x, y ∈ K , x �= y, we have

F(x, y) �⊆ − int C ⇒ F(y, x) ⊆ −int C.

(iii) pseudomonotone of Type II if for all x, y ∈ K , we have

F(x, y) ⊆ C ⇒ F(y, x) �⊆ int C.

(iv) strictly pseudomonotone of Type II if for all x, y ∈ K , x �= y, we have

F(x, y) ⊆ C ⇒ F(y, x) ⊆ −int C.

Remark 2 The property of (strict) pseudomonotonicity of Type II implies (strict) pseudomo-
notonicity of Type I.

Definition 5 A multibifunction F : K × K → �(Y ) is said to be negative at infinity, if, for
each x ∈ K there exists some constant ρ(x) such that F(y, x) ⊆ −int C for all y ∈ K with
‖y‖ ≥ ρ(x).
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3 Z-map and Z-multibifunction

We first recall the following definitions. Let X∗ be the adjoint space of X with 〈u, x〉 denoting
the value of u ∈ X∗ at x ∈ X . Let P∗ be the dual cone

P∗ = {u ∈ X∗ : 〈u, x〉 ≥ 0,∀x ∈ P}
Definition 6 (see [7]) Let X be a Banach space which is also a vector lattice with positive
cone P , and let T : P → P∗. T is said a Z -map relative to P if for any x, y, z ∈ P ,
z ∧ (x − y) = 0 implies that 〈T (x) − T (y)〉 ≤ 0.

Definition 7 Let (X, P) be a vector lattice induced by a pointed, closed and convex cone
P and a bifunction F : P × P → R. F is said a Z -bifunction if for any x, y, z ∈ P ,
z ∧ (x − y) = 0 and F(x, x + z) ≥ 0 imply that F(y, y + z) ≥ 0;

Example 1 Consider X = R and P = R+, and F be defined by

F(x, y) = (x2 − 1)(y − x).

It is easy to see that F is a Z -bifunction.

Proposition 1 Let (X, P) be a vector lattice induced by a pointed, closed and convex cone P
and T : P → X∗ be a Z-map. Then the bifunction F(x, y) = 〈T (x), y−x〉 is a Z-bifunction.

The following definition extends the definition of Z -map introduced in [7] and
Definition 7.

Definition 8 Let (X, P) be a vector lattice induced by a pointed, closed and convex cone P
and F : P × P → �(Y ) be a multibifunction. F is said a Z -multibifunction of type I if for
any x, y, z ∈ P , z ∧(x − y) = 0 and F(x, x + z) �⊆ −int C imply that F(y, y + z) �⊆ −int C .

Example 2 Let X = Y = R2 and P = R2+, F : P × P → �(Y ) be defined by

F(x, y) = {
(u, v) ∈ R2 : u = 1 − y1, v ∈ [

0, x2
2

]}

Let x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ P with z ∧ (x − y) = 0; we have

F(x, x + z) = {
(u, v) ∈ R2 : u = 1 − x1 − z1, v ∈ [

0, x2
2

]}

F(y, y + z) = {
(u, v) ∈ R2 : u = 1 − y1 − z1, v ∈ [

0, y2
2

]}

We consider the following cases:

(1) z1, z2 ≥ 0, x1 = y1, x2 = y2

F(x, x + z) = {
(u, v) ∈ R2 : u = 1 − x1 − z1, v ∈ [

0, x2
2

]} �⊆ −intC

⇒ F(y, y + z) = {
(u, v) ∈ R2 : u = 1 − x1 − z1, v ∈ [

0, x2
2

]} �⊆ −intC

(2) z1 ≥ 0, z2 = 0, x1 = y1, x2 > y2

F(x, x + z) = {
(u, v) ∈ R2 : u = 1 − x1 − z1, v ∈ [

0, x2
2

] } �⊆ −intC

⇒ F(y, y + z) = {
(u, v) ∈ R2 : u = 1 − x1 − z1, v ∈ [

0, y2
2

] } �⊆ −intC
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(3) z1 = 0, z2 ≥ 0, x1 > y1, x2 = y2

F(x, x + z) = {
(u, v) ∈ R2 : u = 1 − x1, v ∈ [

0, x2
2

]} �⊆ −intC

⇒ F(y, y + z) = {
(u, v) ∈ R2 : u = 1 − y1, v ∈ [

0, x2
2

]} �⊆ −intC

(4) z1 = z2 = 0, x1 > y1, x2 > y2

F(x, x + z) = {
(u, v) ∈ R2 : u = 1 − x1, v ∈ [

0, x2
2

]} �⊆ −intC

⇒ F(y, y + z) = {
(u, v) ∈ R2 : u = 1 − y1, v ∈ [

0, y2
2

]} �⊆ −intC

Thus, F is a Z -multibifunction of type I.
Moreover the following definition generalizes Definition 2.7 of [5] of vector Z -map of

type II.

Definition 9 Let (X, P) be a vector lattice induced by a pointed, closed and convex cone P
and a multibifunction F : P × P → �(Y ). F is said a Z -multibifunction of type II if for
any x, y, z ∈ P , z = x ∧ y and F(x, x + y − z) �⊆ −int C imply that F(z, y) �⊆ −int C .

Proposition 2 Let (X, P) be a vector lattice induced by a pointed, closed and convex cone
P and F : P × P → �(Y ) be a Z-multibifunction of type I. Then F is a Z-multibifunction
of type II.

Proof Let x, y, z ∈ P such that z = x ∧ y. It follows that (x − z) ∧ (y − z) = 0.
Let F : P × P → �(Y ) be a Z -multibifunction of type I. If F(x, x + y − z) �⊆ −int C ,

then F(z, z + y − z) = F(z, y) �⊆ −int C . ��

4 Main results

In this section we derive some results on the relationships between problems (I)–(VI) under
some suitable conditions. In what follows, unless otherwise specified, we assume that P is a
pointed, closed and covex cone of a real Banach space X and (X, P) is a lattice.

Theorem 1 Suppose that F : P × P → �(Y ) is a strictly pseudomonotone multivalued
bifunction of Type I. Then every solution of (II) is also a solution of (VI).

Proof Let x∗ ∈ P be a solution of GWVEP, this implies

F(x∗, y) �⊆ −intC, ∀y ∈ P. (1)

Since P is a cone, one has F(x∗, x∗ + y) �⊆ −intC for any y ∈ P , then x∗ ∈ Fw. We claim
that x∗ is a solution of GWLEP. Suppose that x∗ is not a solution of GWLEP, then there
exists some x ∈ Fw, with x∗ �= x such that x∗ − x ∈ P . Then F(x, x + x∗ − x) �⊆ −intC
and, by the fact that F is a strictly pseudomonotone multivalued bifunction of Type I, we
have F(x∗, x) ⊆ −intC , which contradicts (1). The proof is complete. ��
Theorem 2 Suppose that F : P × P → �(Y ) is a strictly pseudomonotone multivalued
bifunction of Type II. Then every solution of (I) is also a solution of (V).

Proof Let x∗ ∈ P be a solution of GSVEP, this implies

F(x∗, y) ⊆ C, ∀y ∈ P. (2)
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Since P is a cone, one has F(x∗, x∗ + y) ⊆ C for any y ∈ P , then x∗ ∈ Fs . We claim that
x∗ is a solution of problem (V). Suppose that x∗ is not a solution of problem (V), then there
exists some x ∈ Fs , with x∗ �= x such that x∗ − x ∈ P . Then F(x, x + x∗ − x) ⊆ C and
by the fact that F is a strictly pseudomonotone multivalued bifunction of Type II, we have
F(x∗, x) ⊆ −intC , which contradicts (2). The proof is complete. ��

Theorem 3 Suppose that F : P × P → �(Y ) is strictly pseudomonotone of type I and F
is a Z-multibifunction of Type I. Then every solution of (II) is also a solution of (IV).

Proof Let x∗ ∈ P be a solution of GWVEP, this implies

F(x∗, y) �⊆ −intC, ∀y ∈ P. (3)

Since P is a cone, one has F(x∗, x∗ + y) �⊆ −intC for any y ∈ P , then x∗ ∈ Fw. Now, we
will prove that x∗ ≤ x for any given x ∈ Fw. For that, let z = x∗ ∧ x . Since x∗ ∈ P and
x ∈ P and (X, P) is a vector lattice then z ∈ P . Substituting z into (3), we have

F(x∗, z) �⊆ −intC (4)

and, by the fact F is pseudomontone, from (4) it follows that

F(z, x∗) ⊆ −int C. (5)

Moreover, if x ∈ Fw, as x∗ − z ∈ P , F(x, x + x∗ − z) �⊆ −intC. By the fact that F is
a Z -multibifunction of type I, it follows that F(z, x∗) �⊆ −intC which contradicts (5). The
proof is complete. ��

Theorem 4 Suppose that F : P × P → �(Y ) is strictly pseudomonotone of type II and F
is a Z-multibifunction of Type I. Then every solution of (I) is also a solution of (III).

Proof Let x∗ ∈ P be a solution of GSVEP. Then

F(x∗, y) ⊆ C, ∀y ∈ P. (6)

Since P is a cone, one has F(x∗, x∗ + y) ⊆ C, ∀y ∈ P , then x∗ ∈ Fs. Now we will prove
that x∗ ≤ x for any given x ∈ Fs. Let z = x∗ ∧ x . Since x∗ ∈ P and x ∈ P and (X, P) is a
vector lattice, we have z ∈ P . Substituting z into (6), we have

F(x∗, z) ⊆ C (7)

and, by the fact that F is strictly pseudomontone of Type II, from (7) it follows that

F(z, x∗) ⊆ −int C. (8)

Moreover, if x ∈ Fx, as x∗ − z ∈ P , F(x, x + x∗ − z) ⊆ −intC . Since F is a Z -multibi-
function of type I, it follows that

F(z, x∗) �⊆ −intC. (9)

which contradicts (8). The proof is complete. ��
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5 Properties of feasible sets

Proposition 3 (see [6]) Let X, Y be real Banach spaces and K be a nonempty, bounded
and closed convex subset of X, F : K × K → �(Y ) and C ⊆ Y be a closed, convex, and
solid cone. Assume that

(i) F is a pseudomonotone multibifunction of Type I;
(ii) F(x, x) ⊆ C for all x ∈ K ;

(iii) F is explicitly C-quasiconvex;
(iv) F(·, y) is hemicontinous for all y ∈ K ;
(v) F̃(y) = {x ∈ K : F(y, x) ⊆ int C} is open for all y ∈ K .

Then the GWVEP has solution.

Remark 3 If K is not bounded, a coercivity condition guarantees the existence of a solution
([5]).

Lemma 1 Let P ⊆ X a closed convex cone, X be a (reflexive) real Banach space, F :
P × P → �(Y ) be a (strictly) pseudomonotone multivalued bifunction of Type I and
C ⊆ Y be a closed, convex, and solid cone. Then for a fixed z ∈ P, the multibifunction
Fz : P × P → �(Y ) defined by F rmz(x, y) = F(x + z, y + z), x, y ∈ P is (strictly)
pseudomonotone of type I.

Proof For x, y ∈ P , suppose Fz(x, y) �⊆ −int C , then F(x + z, y + z) �⊆ −int C . As F is
pseudomonotone of type I, it follows that F(y+z, x+z) �⊆ int C and hence Fz(y, x) �⊆ int C .
Therefore Fz is also pseudomonotone of type I. ��
Proposition 4 Let X be a real reflexive Banach space. Let Y be a real Banach space and C
be a closed, convex, and solid cone. Let P ⊆ X be a pointed, closed and convex cone and
F : P × P → �(Y ) be a pseudomonotone multibifunction of Type I and negative at infinity.
Suppose that

(i) F(x, x) ⊆ C for all x ∈ P;
(ii) F is explicitly C-quasiconvex;

(iii) F(x, ·) is lower semicontinuous for all x ∈ P;
(iv) F(·, y) is hemicontinuous for all y ∈ P;
(v) for a fixed z ∈ P, for any given x, y ∈ P, Fz(x, w) �⊆ −intC implies that Fz(x, y) �⊆

−intC with w = λy + (1 − λ)x, 0 < λ < 1.

Then for any given z ∈ P,

∃x∗ ∈ P : F(z + x∗, z + y) �⊆ −int C, ∀y ∈ P. (10)

Proof For fixed z ∈ P the function Fz(·, y) is hemicontinous for all y ∈ P . By Lemma 1,
Fz is also pseudomonotone of Type I.

Let ρ = ‖z‖ + ρ(z) where ρ(z) is defined as in Definition 5. Let

D = {y : y ∈ P, ‖y‖ ≤ ρ}.
By Proposition 3 there exists a point x∗ ∈ P with ‖x∗‖ ≤ ρ such that

Fz(x∗, y) = F(x∗ + z, y + z) �⊆ −intC, ∀y ∈ D. (11)
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Now, we prove that ‖x∗‖ < ρ. In fact ‖x∗‖ = ρ implies ‖x∗ + z‖ ≥ ‖x∗‖ − ‖z‖ = ρ(z)
and, since F is negative at infinity,

F(x∗ + z, z) ⊆ −intC (12)

Moreover, letting y = 0 in (11), one has F(x∗+z, z) �⊆ −intC , which contradicts (12). There-
fore ‖x∗‖ < ρ. Given y ∈ P , we can choose 0 < λ < 1 such that w = λy + (1 −λ)x∗ ∈ D.

It follows that

Fz(x∗, w) = F(x∗ + z, λy + (1 − λ)x∗ + z) �⊆ −intC. (13)

Therefore by assumption (v) we have Fz(x∗, y) �⊆ −intC, ∀y ∈ P . ��

Corollary 1 Suppose that F satisfies the assumptions of Proposition 4 and in addition F is
strictly pseudomonotone of Type I. Then the solution x∗ of the problem (10) is unique.

Now we give a result about a property of the feasible set Fw of a multivalued Z -bifunction
F with respect to P .

Theorem 5 Let X be a real reflexive Banach space. Let Y be a real Banach space and C
be a closed, convex, and solid cone. Let P ⊆ X be a pointed, closed and convex cone and
F : P × P → �(Y ) be a strictly pseudomonotone of Type I Z-multibifunction and negative
at infinity. Suppose that

(i) F(x, x) ⊆ C for all x ∈ P;
(ii) F is explicitly C-quasiconvex;

(iii) F(x, ·) is lower semicontinuous for all x ∈ P;
(iv) F(·, y) is hemicontinuous for all y ∈ P.
(v) for any given z ∈ P, Fz(x, w) �⊆ −intC implies F(x, y) �⊆ −intC with w = λy +

(1 − λ)x∗, 0 < λ < 1, x, y ∈ P.

Then the feasible set F is a sublattice, i.e., x ∈ Fw and y ∈ Fw imply that x ∧ y ∈ Fw.

Proof Suppose x, y ∈ Fw and let z = x ∧ y. Since x, y ∈ P , also z ∈ P . By Proposition 4,
there exists x∗ ∈ P such that

F(x∗ + z, y + z) �⊆ −int C, ∀y ∈ P. (14)

For any v ∈ P , x∗ + v ∈ P thus F(x∗ + z, x∗ + v + z) �⊆ −int C, ∀v ∈ P.

Let z1 = x ∧ (z + x∗) and z2 = y ∧ (z + x∗). Suppose z1 �= z + x∗. By the fact x ∈ Fw

and z + x∗ − z1 ∈ P , we have F(x, x + z + x∗ − z1) �⊆ −int C.

From the definition of a Z -multibifunction, it follows that F(z1, x∗ + z) �⊆ −int C.

By using the strictly pseudomonotonicity of F , we have that

F(x∗ + z, z1) ⊆ −int C. (15)

Moreover, substituting z1 − z into (14) we have F(x∗ + z, z1) �⊆ −int C which contradicts
(15). Then z1 = z + x∗ and so z + x∗ ≤ x . Similarly, we can prove that z2 = x∗ + z and
x∗ + z ≤ y. Hence x∗ + z ≤ x ∧ y = z and so x∗ = 0. The proof is complete. ��
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